Meet Gordon, probably the world’s first robot controlled exclusively by living brain tissue.
Stitched together from cultured rat neurons, Gordon’s primitive grey matter was designed at the University of Reading by scientists who unveiled the neuron-powered machine on Wednesday.
Their groundbreaking experiments explore the vanishing boundary between natural and artificial intelligence, and could shed light on the fundamental building blocks of memory and learning, one of the lead researchers told AFP.
“The purpose is to figure out how memories are actually stored in a biological brain,” said Kevin Warwick, a professor at the University of Reading and one of the robot’s principle architects.
Observing how the nerve cells cohere into a network as they fire off electrical impulses, he said, may also help scientists combat neurodegenerative diseases that attack the brain such as Alzheimer’s and Parkinson’s.
“If we can understand some of the basics of what is going on in our little model brain, it could have enormous medical spinoffs,” he said.
Looking a bit like the garbage-compacting hero of the blockbuster animation “Wall-E”, Gordon has a brain composed of 50,000 to 100,000 active neurons.
Once removed from rat foetuses and disentangled from each other with an enzyme bath, the specialised nerve cells are laid out in a nutrient-rich medium across an eight-by-eight centimetre (five-by-five inch) array of 60 electrodes.
This “multi-electrode array” (MEA) serves as the interface between living tissue and machine, with the brain sending electrical impulses to drive the wheels of the robots, and receiving impulses delivered by sensors reacting to the environment.
Because the brain is living tissue, it must be housed in a special temperature-controlled unit — it communicates with its “body” via a Bluetooth radio link.
The robot has no additional control from a human or computer.
From the very start, the neurons get busy. “Within about 24 hours, they start sending out feelers to each other and making connections,” said Warwick.
“Within a week we get some spontaneous firings and brain-like activity” similar to what happens in a normal rat — or human — brain, he added.
Advances like these are why I think superior artificial intelligence will be built in the next decade or two.How many of you expected to see this happening in 2008?
If you didn’t see a robot with a biological brain coming, then why even bother to hold on to the idea that superior AI won’t be possible for hundreds of years?
Found this Post interesting? Discover more Curious Reads.[via technutnews]